Mathematics (B.E.S.T.) Standards

GRADE: K12

Strand: MATHEMATICAL THINKING AND REASONING
Standard 1: Actively participate in effortful learning both individually and collectively.

Standard 2: Demonstrate understanding by representing problems in multiple ways.	
BENCHMARK CODE	BENCHMARK
MA.K12.MTR.2.1	Demonstrate understanding by representing problems in multiple ways.

Standard 3: Complete tasks with mathematical fluency.	
BENCHMARK CODE	BENCHMARK
MA.K12.MTR.3.1	Complete tasks with mathematical fluency.
	Mathematicians who complete tasks with mathematical fluency:
	- Select efficient and appropriate methods for solving problems within the given context.
	- Maintain flexibility and accuracy while performing procedures and mental calculations.
	- Complete tasks accurately and with confidence.
	- Adapt procedures to apply them to a new context.
	- Use feedback to improve efficiency when performing calculations.

Clarifications:

Teachers who encourage students to complete tasks with mathematical fluency:

- Provide students with the flexibility to solve problems by selecting a procedure that allows them to solve efficiently and accurately.
- Offer multiple opportunities for students to practice efficient and generalizable methods.
- Provide opportunities for students to reflect on the method they used and determine if a more efficient method could have been used.

Standard 4: Engage in discussions that reflect on the mathematical thinking of self and others.

BENCHMARK CODE	BENCHMARK
MA.K12.MTR.4.1	Engage in discussions that reflect on the mathematical thinking of self and others. Mathematicians who engage in discussions that reflect on the mathematical thinking of self and others: - Communicate mathematical ideas, vocabulary and methods effectively. - Analyze the mathematical thinking of others. - Compare the efficiency of a method to those expressed by others. - Recognize errors and suggest how to correctly solve the task. - Justify results by explaining methods and processes. - Construct possible arguments based on evidence. Clarifications: Teachers who encourage students to engage in discussions that reflect on the mathematical thinking of self and others: - Establish a culture in which students ask questions of the teacher and their peers, and error is an opportunity for learning. - Create opportunities for students to discuss their thinking with peers. - Select, sequence and present student work to advance and deepen understanding of correct and increasingly efficient methods. - Develop students' ability to justify methods and compare their responses to the responses of their peers.

	- Help students recognize the patterns in the world around them and connect these patterns to mathematical concepts.
-Support students to develop generalizations based on the similarities found among problems.	
-Provide opportunities for students to create plans and procedures to solve problems.	
-Develop students' ability to construct relationships between their current understanding and more sophisticated ways of thinking.	

BENCHMARK CODE	BENCHMARK
MA.K12.MTR.6.1	Assess the reasonableness of solutions. Mathematicians who assess the reasonableness of solutions: - Estimate to discover possible solutions. - Use benchmark quantities to determine if a solution makes sense. - Check calculations when solving problems. - Verify possible solutions by explaining the methods used. - Evaluate results based on the given context. Clarifications: Teachers who encourage students to assess the reasonableness of solutions: - Have students estimate or predict solutions prior to solving. - Prompt students to continually ask, "Does this solution make sense? How do you know?" - Reinforce that students check their work as they progress within and after a task. - Strengthen students' ability to verify solutions through justifications.

- Provide opportunities for students to create models, both concrete and abstract, and perform investigations.
- Challenge students to question the accuracy of their models and methods.
- Support students as they validate conclusions by comparing them to the given situation.
- Indicate how various concepts can be applied to other disciplines.

Mathematics (B.E.S.T.) Standards

GRADE: K

Strand: NUMBER SENSE AND OPERATIONS

Standard 1: Develop an understanding for counting using objects in a set.

BENCHMARK CODE	BENCHMARK
MA.K.NSO.1.1	Given a group of up to 20 objects, count the number of objects in that group and represent the number of objects with a written numeral. State the number of objects in a rearrangement of that group without recounting. Clarifications: Clarification 1: Instruction focuses on developing an understanding of cardinality and one-to-one correspondence. Clarification 2: Instruction includes counting objects and pictures presented in a line, rectangular array, circle or scattered arrangement. Objects presented in a scattered arrangement are limited to 10. Clarification 3: Within this benchmark, the expectation is not to write the number in word form.
	Related Access Point(s)
	MA.K.NSO.1.AP. 1 Given a group of up to 10 objects, count the number of objects in that group and represent the number by identifying the written numeral. Express the number of objects in a rearrangement of that group without recounting. Date Adopted or Revised: 03/23
MA.K.NSO.1.2	Given a number from 0 to 20, count out that many objects. Clarifications: Clarification 1: Instruction includes giving a number verbally or with a written numeral.
	Related Access Point(s)
	MA.K.NSO.1.AP. 2 Given a number from 0 to 10, count out that many objects. Date Adopted or Revised: 03/23
MA.K.NSO.1.3	Identify positions of objects within a sequence using the words "first," "second," "third," "fourth" or "fifth." Clarifications: Clarification 1: Instruction includes the understanding that rearranging a group of

	objects does not change the total number of objects but may change the order of an object in that group.
	RA.K.NSO.1.AP.3 MA.K. ldentify the "first," "second" or "third" object within a sequence. Date Adopted or Revised: $03 / 23$
MA.K.NSO.1.4	Compare the number of objects from 0 to 20 in two groups using the terms less than, equal to or greater than.
	Clarifications:
Clarification 1: Instruction focuses on matching, counting and the connection to addition and subtraction.	
Clarification 2: Within this benchmark, the expectation is not to use the relational	
symbols =,> or <.	

BENCHMARK CODE	BENCHMARK
MA.K.NSO.2.1	Recite the number names to 100 by ones and by tens. Starting at a given number, count forward within 100 and backward within 20. Clarifications: Clarification 1: When counting forward by ones, students are to say the number names in the standard order and understand that each successive number refers to a quantity that is one larger. When counting backward, students are to understand that each succeeding number in the count sequence refers to a quantity that is one less. Clarification 2: Within this benchmark, the expectation is to recognize and count to 100 by the end of Kindergarten.
	Related Access Point(s)
	MA.K.NSO.2.AP. 1 Express number names from 1 to 100 by ones and from 10 to 100 by tens. Starting at a given number, count forward to 20 and backwards within 10. Date Adopted or Revised: 03/23
MA.K.NSO.2.2	Represent whole numbers from 10 to 20, using a unit of ten and a group of ones, with objects, drawings and expressions or equations. Examples: The number 13 can be represented as the verbal expression "ten ones and three ones" or as " 1 ten and 3 ones".
	Related Access Point(s)
	MA.K.NSO.2.AP. 2 Represent whole numbers from 10 to 19 , using one group of 10 ones and some further ones, with objects, drawings or verbalization. Date Adopted or Revised: 03/23
MA.K.NSO.2.3	Locate, order and compare numbers from 0 to 20 using the number line and terms less than, equal to or greater than. Clarifications:

Clarification 1: Within this benchmark, the expectation is not to use the relational symbols =,> or <.
Clarification 2: When comparing numbers from 0 to 20, both numbers are plotted on the same number line.
Clarification 3: When locating numbers on the number line, the expectation includes filling in a missing number by counting from left to right on the number line.

Related Access Point(s)
MA.K.NSO.2.AP. 3
Locate and compare two numbers from 0 to 10 to determine which number is less than, equal to or greater than the other number.
Date Adopted or Revised: 03/22

Strand: ALGEBRAIC REASONING

Standard 1: Represent and solve addition problems with sums between 0 and 10 and subtraction problems using related facts.

BENCHMARK CODE	BENCHMARK
MA.K.AR.1.1	For any number from 1 to 9, find the number that makes 10 when added to the given number. Clarifications: Clarification 1: Instruction includes creating a ten using manipulatives, number lines, models and drawings.
	Related Access Point(s)
	MA.K.AR.1.AP. 1 For any number from 1 to 9 , use objects to find the number that makes 10 when added to the given number. Date Adopted or Revised: 03/23
MA.K.AR.1.2	Given a number from 0 to 10, find the different ways it can be represented as the sum of two numbers. Clarifications:
	Clarification 1: Instruction includes the exploration of finding possible pairs to make a sum using manipulatives, objects, drawings and expressions; and understanding how the different representations are related to each other.
	Related Access Point(s)
	MA.K.AR.1.AP. 2 Given a number from 0 to 5 , find the different ways it can be represented as the sum of two numbers. Date Adopted or Revised: 03/23
MA.K.AR.1.3	Solve addition and subtraction real-world problems using objects, drawings or equations to represent the problem.
	Clarifications:
	Clarification 1: Instruction includes understanding the context of the problem, as well as the quantities within the problem. Clarification 2: Students are not expected to independently read word problems.
	Clarification 3: Addition and subtraction are limited to sums within 10 and related subtraction facts. Refer to Situations Involving Operations with Numbers (Appendix A).
	Related Access Point(s)
	MA.K.AR.1.AP. 3 Solve addition and subtraction real-world problems within 5 using objects, drawings or equations to represent the problem. Date Adopted or Revised: 03/23

Standard 2: Develop an understanding of the equal sign.	
BENCHMARK CODE	BENCHMARK
MA.K.AR.2.1	Explain why addition or subtraction equations are true using objects or drawings. Examples: The equation 7=9-2 can be represented with cupcakes to show that it is true by crossing out two of the nine cupcakes. Clarifications: Clarification 1: Instruction focuses on the understanding of the equal sign.

	Clarification 2: Problem types are limited to an equation with two or three terms. The sum or difference can be on either side of the equal sign. Clarification 3: Addition and subtraction are limited to sums within 20 and related subtraction facts.
	Related Access Point(s)
	MA.K.AR.2.AP. 1 Show that an addition or subtraction equation within 5 is true using objects or drawings. Date Adopted or Revised: 03/23
Strand: MEASUREMENT	
Standard 1: Identify and compare measurable attributes of objects.	
BENCHMARK CODE	BENCHMARK
MA.K.M.1.1	Identify the attributes of a single object that can be measured such as length, volume or weight. Clarifications: Clarification 1: Within this benchmark, measuring is not required.
	Related Access Point(s)
	MA.K.M.1.AP. 1 Explore the attributes of a single object that can be measured such as length or weight. Date Adopted or Revised: 03/23
MA.K.M.1.2	Directly compare two objects that have an attribute which can be measured in common. Express the comparison using language to describe the difference. Clarifications: Clarification 1: To directly compare length, objects are placed next to each other with one end of each object lined up to determine which one is longer. Clarification 2: Language to compare length includes short, shorter, long, longer, tall, taller, high or higher. Language to compare volume includes has more, has less, holds more, holds less, more full, less full, full, empty, takes up more space or takes up less space. Language to compare weight includes heavy, heavier, light, lighter, weighs more or weighs less.
	Related Access Point(s)
	MA.K.M.1.AP. 2 Directly compare two objects to determine which is longer/shorter or heavier/lighter. Date Adopted or Revised: 03/23
MA.K.M.1.3	Express the length of an object, up to 20 units long, as a whole number of lengths by laying non-standard objects end to end with no gaps or overlaps. Examples: Example: A piece of paper can be measured using paper clips. Clarifications: Clarification 1: Non-standard units of measurement are units that are not typically used, such as paper clips or colored tiles. To measure with non-standard units, students lay multiple copies of the same object end to end with no gaps or overlaps. The length is shown by the number of objects needed.
	Related Access Point(s)
	MA.K.M.1.AP. 3 Express the length of an object, up to 10 units long, as a whole number of lengths using non-standard objects laid end to end with no gaps or overlaps. Date Adopted or Revised: 03/23

Strand: GEOMETRIC REASONING
Standard 1: Identify, compare and compose two- and three-dimensional figures.

BENCHMARK CODE	BENCHMARK
MA.K.GR.1.1	Identify two- and three-dimensional figures regardless of their size or orientation. Figures are limited to circles, triangles, rectangles, squares, spheres, cubes, cones and cylinders.
	Clarifications:
	Clarification 1: Instruction includes a wide variety of circles, triangles, rectangles, squares, spheres, cubes, cones and cylinders. Clarification 2: Instruction includes a variety of non-examples that lack one or more defining attributes. Clarification 3: Two-dimensional figures can be either filled, outlined or both.

Related Access Point(s)
MA.K.GR.1.AP. 1
Identify two- and three-dimensional figures regardless of their size. Figures are limited to circles, triangles, rectangles, squares, spheres, cubes, cones and cylinders.
Date Adopted or Revised: 03/23

MA.K.GR.1.2	Compare two-dimensional figures based on their similarities, differences and positions. Sort two-dimensional figures based on their similarities and differences. Figures are limited to circles, triangles, rectangles and squares. Examples: A triangle can be compared to a rectangle by stating that they both have straight sides, but a triangle has 3 sides and vertices, and a rectangle has 4 sides and vertices. Clarifications: Clarification 1: Instruction includes exploring figures in a variety of sizes and orientations. Clarification 2: Instruction focuses on using informal language to describe relative positions and the similarities or differences between figures when comparing and sorting.
	Related Access Point(s)
	MA.K.GR.1.AP.2a Sort two-dimensional figures based on their similarities. Figures are limited to circles, triangles, rectangles and squares. Date Adopted or Revised: 03/23 MA.K.GR.1.AP.2b Use informal spatial language to describe the relative positions of two-dimensional figures (e.g., above, below, beside, next to, under). Date Adopted or Revised: 03/23
MA.K.GR.1.3	Compare three-dimensional figures based on their similarities, differences and positions. Sort three-dimensional figures based on their similarities and differences. Figures are limited to spheres, cubes, cones and cylinders. Clarifications: Clarification 1: Instruction includes exploring figures in a variety of sizes and orientations. Clarification 2: Instruction focuses on using informal language to describe relative positions and the similarities or differences between figures when comparing and sorting.

Strand: DATA ANALYSIS AND PROBABILITY
Standard 1: Develop an understanding for collecting, representing and comparing data.

BENCHMARK CODE	BENCHMARK
MA.K.DP.1.1	Collect and sort objects into categories and compare the categories by counting the objects in each category. Report the results verbally, with a written numeral or with drawings. Examples:
	A bag containing 10 circles, triangles and rectangles can be sorted by shape and then each category can be counted and compared. Clarifications:
Clarification 1: Instruction focuses on supporting work in counting. Clarification 2: Instruction includes geometric figures that can be categorized using their defining attributes. Clarification 3: Within this benchmark, it is not the expectation for students to construct formal representations or graphs on their own.	

MA.K.DP.1.AP. 1
1 Sort objects by characteristic (e.g., size, shape or color). Count the objects in each category and report the results.
Date Adopted or Revised: 03/23

